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Abstract. A double SQUID manipulated by fast magnetic flux pulses can be used as a tunable flux qubit. In
this paper we study the requirements for the qubit operation and evaluate the dissipation and decoherence
due to the manipulation, with particular attention to the contribution related to the applied tuning control,
not present in simpler flux qubits. Furthermore, we shortly discuss the possibility to use an integrated Rapid
Single Flux Quantum logic for the qubit control.

PACS. 03.67.Lx Quantum computation – 85.25.Dq Superconducting quantum interference devices
(SQUIDs)

1 Introduction

Quantum computing can overcome the limitations that
are intrinsic and unavoidable in classical instruments;
moreover it is a formidable framework for the study and
understanding of quantum mechanics [1]. Different qubits
(the basic elements of a quantum computer) based on
solid state superconducting devices have been realized
and tested, individually and in simple coupled config-
urations [2–15]. Their coherent manipulation, generally
performed by NMR-like microwave excitations or by fast
pulses, is a critical question: it must be fast, reliable, sim-
ple and easily integrable. In this context one of the most
interesting possible strategies consists in the use of an in-
tegrated Rapid Single Flux Quantum (RSFQ) logic for
qubit manipulation [16–18].

In this paper we consider a particular qubit based on a
Superconducting Quantum Interference Device (SQUID)
with a high degree of tunability, the so called double
SQUID [19–23], and its manipulation performed by fast
variation of the magnetic flux controls (instead of the usu-
ally considered microwave excitation). The behaviour of a
typical device is studied in order to define its operating
parameters, to fix the requirement for the manipulating
pulses, and to evaluate dissipation and decoherence due
to the manipulation; in particular we consider the contri-
bution due to the extra control necessary for the qubit
tuning, not present in other flux qubits, such as the per-
sistent current qubit [4] or the simple rf SQUID qubit. Fi-
nally we shortly consider the possibility to use the RSFQ
logic with appropriate modifications in order to perform
qubit manipulation.
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2 The tunable flux qubit

A rf SQUID consists of a superconducting loop of induc-
tance L, interrupted by a Josephson junction of critical
current I0 and capacitance C, and biased by an applied
magnetic flux Φx. For appropriate conditions it can be
effectively used as a flux qubit. A more tunable device,
the double SQUID [19,20], is obtained by replacing the
single junction with a dc SQUID, a smaller supercon-
ducting loop of inductance � interrupted by two identi-
cal junctions with critical current J and capacitance C0,
biased by an applied magnetic flux Φc (Fig. 1a). For
� � ϕ0/J (where Φ0

∼= 2.07 × 10−15 Wb is the flux
quantum and ϕ0 = Φ0/2π is the reduced flux quantum)
the dc SQUID behaves approximately as a single junction
with total capacitance C = 2C0 and tunable critical cur-
rent I0 = 2 J cos (π Φc/Φ0), and the double SQUID can be
used as a tunable rf SQUID. The system dynamics is de-
scribed by the canonical variable ϕ (the phase difference
across the dc SQUID, related to the flux Φ in the large
loop by ϕ = Φ/ϕ0), and by the relative conjugate variable
p = −i�∂/∂ϕ, with Hamiltonian:

H =
p2

2M
+ EL

[
1
2

(ϕ− ϕx)2 − β cos (ϕ)
]

(1)

where EL = ϕ2
0/L is the energy scale, ϕx = Φx/ϕ0 and

ϕc = Φc/ϕ0 are the reduced control fluxes, M = Cϕ2
0 is

the effective mass, and β = 2JL/ϕ0 cos (ϕc/2).
For ϕx = π (corresponding to Φx = Φ0/2) the poten-

tial is symmetric, with two identical minima separated by
a barrier if it 1 < β < 4.60 (Fig. 1b). In this case the
energy spectrum is characterized by a degenerate situa-
tion, with the first two levels separated by an energy gap
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Fig. 1. (a) Scheme of the double SQUID with the two inde-
pendent control coils. (b) Potential of the double SQUID in
the symmetric case, and relative energy levels. (c) Potential in
the asymmetric case.

�∆ = E1 − E0 which it is smaller than the separation
from upper levels (E2 −E1 � �∆). In the absence of pos-
sible excitations to these upper levels (due for example
to temperature or to nonadiabatic variations) a two state
approximation can be used by considering the reduced
energy basis with just the first two energy eigenstates |0〉
and |1〉. A second basis can be introduced, consisting of
the two flux states centred in the left and right minima re-
spectively, with approximately |L〉 = (|0〉 + |1〉) /√2 and
|R〉 = (|0〉 − |1〉) /√2. Also in the asymmetric case, for ϕx

different but close to π, one can again use the two state
approximation; now the Hamiltonian (1) in the flux basis
can be rewritten as follows:

Hflux = −�∆

2
σx − �ε

2
σz (2)

where σx, σy , σz are the standard Pauli matrices, and �ε is
the energy separation between the two minima (potential
asymmetry) (Fig. 1c). The eigenstates of Hamiltonian (2)
can be written as |0̃〉 = c|L〉 + s|R〉 and |1̃〉 = s|L〉 − c|R〉
(we use here tilded kets to avoid confusion with the energy
eigenstates in the symmetric case |0〉 and |1〉), with c =
cos (θ/2), s = sin (θ/2), and θ = arctan (∆/ε), while the
energy gap between these states is �Ω = �

√
∆2 + ε2. The

energy eigenstates
∣∣0̃〉

and
∣∣1̃〉

are equivalent to |0〉 and
|1〉 only in the symmetric case, when ε = 0 and therefore
θ = π/2.

The considered system can be used as a qubit by map-
ping the computational qubit states “0” and “1” in, for
example, the two distinct flux states |L〉 and |R〉. The pos-
sibility of tuning the parameter∆, generally fixed in other
types of superconducting qubits, allows a complete control
of the qubit and justifies the name “tunable qubit” used
for this system. NMR-like manipulation with microwave
pulses can be performed, but now a complete manipula-
tion is also possible, just with fast flux pulses. For exam-
ple, the state preparation can be done by strongly unbal-
ancing the potential with the control Φx in order to have
just one minimum (for example the left one), then waiting
for a time lapse sufficient for relaxation to this minimum,
and finally returning to the symmetric situation still main-
taining the barrier high. This ensures an initial prepara-
tion in the state |L〉 = (|0〉 + |1〉) /√2, that remains frozen
because of the high barrier. If the barrier is lowered, a co-
herent evolution starts, and after a time t the state evolves
in |ψ (t)〉 = cos (�∆t/2) |L〉−i sin (�∆t/2) |R〉. Finally the

barrier is raised again and the new state is frozen. Other
kinds of manipulations can be performed with similar se-
quences of variations, allowing the full control of a single
qubit [21,22]. More qubits can be coupled together by us-
ing superconducting tunable switching [23], allowing in
this way a controlled entanglement between them.

3 Operation requirements

In this paragraph we study, both numerically and with an-
alytical approximations, the behaviour of the tunable flux
qubit in order to derive the requirements on the control
pulses for both Φx and Φc. A generic scheme with typi-
cal qubit parameters is considered, so that the following
results can be easily applied to different configurations.

In the symmetric case some important quantities can
be defined: the distance ∆ϕ between the minima, the bar-
rier height ∆U , and the small oscillation frequency in the
minima ωb =

√
(dU2/d2ϕ)min /M (Fig. 1b). The system

dynamics is interesting just for β greater and close to 1,
so that these parameters can be expanded in series for
0 < β − 1 � 1 in order to derive approximated analytical
expressions. In order to extend their validity in the range
0 < β < 2 we multiply these expressions by appropriate
powers of β that are determined empirically by compari-
son with the analytical results, under the requirement of
a maximum relative discrepancy below 10−3, obtaining:

∆ϕ ∼=
√

24 (β − 1)β−0.36

∆U ∼= 3
2
EL (β − 1)2 β−0.82

ωb
∼= ωL

√
2 (β − 1)β−0.145 (3)

where ωL = 1/
√
LC. The parameter ∆ can be evaluated

by using an approximated expression in the limit ∆U �
�ωb [24]:

∆ ∼= Aωb

√
B
∆U

�ωb
exp

(
−B ∆U

2�ωb

)
(4)

with A ∼= 1 and B ∼= 10.2. In a more general case, con-
sidering also a slightly asymmetric potential with energy
unbalancing �ε = EL (ϕx − π)∆ϕ (Fig. 1c), we have
E1 − E0 = �Ω = �

√
∆2 + ε2, and the spacing E2 − E1

can be roughly estimated by � (ωb −Ω). We have com-
pared these analytical approximated results with numeri-
cal simulations obtained by solving the time independent
Schrödinger equation with Hamiltonian (1) using standard
numerical techniques. Let us consider a realistic case by
choosing a set of typical parameters for the double SQUID:
large loop inductance L = 85 pH, small loop inductance
� < 5 pH, single junction critical current J = 5 µA and
capacitance C0 = 0.25 pF. In Figure 2 we plot the level
spacing ∆/2π = (E1 − E0) /h in the symmetric case as
a function of the flux control Φc, obtained both analyti-
cally (lower straight line) and numerically (lower dashed
line), and the spacing to upper levels (E2 − E1) /h, again
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Fig. 2. Energy levels spacing (E1 − E0) /h (lower curves)
and (E2 − E1) /h (upper curves), obtained both analytically
(straight lines) and numerically (dashed lines) in the symmet-
ric case.

obtained both analytically (upper straight line) and nu-
merically (upper dashed line). These curves can be used to
fix the fundamental requirements on the control pulse Φc.
Manipulations are performed by switching the system be-
tween two distinct working points: point (F) where the
barrier is very high and the state is frozen, and point (E)
where the barrier is low and the free evolution of the
state occurs. We choose (F) and (E) in order to have
∆F /2π ≈ 100 kHz and ∆E/2π = 500 MHz respectively,
obtaining ΦcF = 359.3 mΦ0 and ΦcE = 367.6 mΦ0, cor-
responding to a pulse amplitude ∆Φc = 8.3 mΦ0. The
rise/fall time τ of this pulse must be chosen with some
attention. In fact the variation rate must be fast with re-
spect to the free evolution frequency ∆/2π = 500 MHz,
but at the same time it must not excite upper non com-
putational states, and so it must also be smaller than
(E2 − E1) /h ≈ 4 GHz (in the point E, the worst case), so
that it must be 90 ps < τ < 700 ps.

In order to have a complete preparation in the left (or
right) state it is necessary to reduce to zero the coeffi-
cient c2 =

∣∣〈L| 0̃
〉∣∣2 = (1 + ε/Ω) /2 (or s2 =

∣∣〈R| 0̃
〉∣∣2 =

(1 − ε/Ω) /2). This expression can be calculated: we ob-
tain that when Φc = ΦcE , it is necessary to have a vari-
ation of Φx from the symmetric point Φ0/2 larger than
∆Φx ≈ 0.2 mΦ0 in order to reduce the coefficient below
1%. The rise/fall times of the Φx pulse must undergo the
same requirements as the Φc pulse.

4 Dissipation and decoherence

For the purposes of this work we limit our analysis to
the study of decoherence contributions due to both the
manipulating fluxes Φx and Φc, and the relative bias cir-
cuitry (for the study of other contributions such as in-
trinsic dissipation, flux fluctuations and readout effects
see, for example, Refs. [25–28]). The flux controls are ap-
plied by using superconducting coils of inductance Lk (the

index k = x, c identifies which of the two controls are
being considered) coupled with mutual inductance Mk

to the considered qubit loop (Fig. 1a). Each coil is bi-
ased by a circuit that we model with an ideal current
source Ik in parallel to a frequency dependent complex
impedance Zk (ω), and to the related generator of current
noise δIk with spectral density SδIk

= 4kbT̃k/Re (Zk),
where T̃k (ω) = �ω/2kb coth (�ω/2kbT ) is the effective
temperature. The current noise δIk causes a corresponding
flux noise δΦk = MkδIk, and a consequent fluctuation of
the parameters ∆ and ε. For small noise contributions, in
linear approximation, we can assume δ ∆ = (d∆/dΦc) δ Φc

and δ ε = (dε/dΦx) δ Φx respectively, with spectral densi-
ties that can be rearranged in the following expressions:

Sδ∆ (ω) =
4kbT̃c

�

R0

Rc

(
Mc

L

)2 [
∂ (�∆/EL)
∂ (Φc/ϕ0)

]2

Sδε (ω) =
4kbT̃x

�

R0

Rx

(
Mx

L

)2 [
∂ (�ε/EL)
∂ (Φx/ϕ0)

]2

(5)

with R0 = ϕ2
0/�

∼= 1026Ω andRk = Re [Zk (ω)]. The noise
contributions can be added in Hamiltonian (2) giving:

Hflux =
(
−�∆

2
σx − �ε

2
σz

)
− � δ∆σx − � δε σz. (6)

In the energy basis of the noiseless Hamiltonian these con-
tributions can be reorganized in a longitudinal and in a
transverse component (σ̃x and σ̃z are the Pauli matrices
related to the energy basis):

Henergy = −�Ω

2
σ̃z − �

(
δε
ε

Ω
+ δ∆

∆

Ω

)
σ̃z

− �

(
δε
∆

Ω
− δ∆

ε

Ω

)
σ̃x. (7)

The two state system theory for small perturbing noise can
be simply extended to the case of two distinct uncorrelated
noise sources with the form of equation (7), giving simple
expressions for the relaxation rate Γ1, the pure dephasing
rate Γϕ and the dephasing rate Γ2 [29]:

Γ1 =
(
∆

Ω

)2

Sδε (Ω) +
( ε
Ω

)2

Sδ∆ (Ω)

Γϕ =
( ε
Ω

)2

Sδε (0) +
(
∆

Ω

)2

Sδ∆ (0)

Γ2 =
1
2
Γ1 + Γϕ. (8)

We notice from equations (5) and (8) that relaxation
and decoherence depend quadratically on the coupling
strengths (Mk/Lk) and only linearly on the effective tem-
peratures and on the dissipating contributions Rk/R0.
This gives an important guideline for the design of the
qubit control, indicating the convenience of a strong de-
coupling from the bias coils.

Let us consider typical control current pulses with am-
plitude of the order of 10 µA. In order to generate the
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Fig. 3. Relaxation and dephasing times T1 and T2 as a function
of the control flux Φc in the symmetric case.

required flux pulses ∆Φx = 0.2 mΦ0 and ∆Φc = 8.3 mΦ0

we need couplings Mx = 41 fH and Mc = 1.7 pH.
For a first rough evaluation we assume Rk/T =

5 Ω/mK (for example Rk = 100 Ω at T = 20 mK) at any
frequency and for both bias lines. With these assumptions
and by using equation (8) we can plot T1 = Γ−1

1 (straight
line) and T2 = Γ−1

2 (dashed line) in the symmetric case as
a function of Φc (Fig. 3). The obtained values T1 and T2,
well above 10 µs during all possible manipulations, must
be compared with the typical time required for one op-
eration (in our case below 2 ns), so that it results, from
this rough evaluation, that the considered system and ma-
nipulation procedure is in principle adequate for quantum
computing applications. This result can be simply scaled
for different assumptions by using equations (5), and it
is also possible to introduce more complex, not flat noise
spectral densities.

5 RSFQ manipulation

RSFQ logic is an architecture based on resistively shunted
Josephson elements, allowing ultra-fast digital opera-
tions [30]. It can be simply and effectively used in order to
produce the flux pulses necessary for the qubit manipula-
tion described in this paper. For example, in a simple and
effective scheme [16–18] the switching of the flux state in
a RSFQ flip-flop can be used as the flux pulse for the con-
trol of a qubit inductively coupled by a superconducting
transformer (Fig. 4).

All the required devices, qubits and RSFQ controls,
can be realized in the same chip using the same technology,
with great advantage for the simplicity and integrability
of the system, but one can also use a coupled-chip design
if necessary.

The integration of the flux qubit with RSFQ controls
is in principle compatible with the operation requirements
discussed in this paper, but the direct use of a conventional
logic presents some problems. First of all, since the RSFQ
logic requires resistive shunts, the typical impedance seen
by the qubit would be very small, of the order of few Ohms
or less, with consequent reduction of times T1 and T2.
Second, typical RSFQ pulse rise/fall times are extremely

Fig. 4. Scheme of two RSFQ T -flip flop used as pulse genera-
tors for the control of the tunable flux qubit.

short, of the order of tens of picoseconds. If directly ap-
plied to the qubit, these signals would induce transitions
to non computational states. Finally, a standard RSFQ
circuitry is designed to work at liquid Helium temper-
ature (4.2 K), but for quantum computing applications
lower temperatures (10 mK) are needed. These problems
could be solved by developing an unconventional RSFQ
logic (for example based on non-linear shunts with very
high impedance in the rest condition that decreases in
the presence of a SFQ pulse [31]) together with an appro-
priate on-chip filtering of the transmitted signal and an
optimization of the qubit parameters.

Different efforts are starting in this direction, in par-
ticular in the frame of the UE project “RSFQubit”, and
first prototypes of chips with an RSFQ flip-flop coupled
to a tunable flux qubit are under fabrication. The first
results will give important indications for the future de-
velopments.

6 Conclusions

A double SQUID with a flux pulse control scheme can be
effectively used as a tunable flux qubit. In this paper we
have studied the requirements for the control fluxes, in
particular for the tuning bias control, both with approxi-
mated analytical expressions and with numerical simula-
tions. For a system with typical parameters we have ob-
tained required control pulses amplitudes ∆Φx ≈ 0.2 mΦ0

and ∆Φc ≈ 8 mΦ0, with rise/fall times τ that must be in
the limit 90 ps < τ < 700 ps. Relaxation and decoherence
times (just due to the manipulating controls) are expected
to be well above 10 µs if one supposes an effective dissi-
pation of 100 Ω at 20 mK, which is suitable for quantum
computing applications.

RSFQ logic is an interesting candidate for the control
of this qubit, provided the development is performed of
an unconventional RSFQ design that would accomplish
the qubit requirements. Possible future work concerns the
optimization of the parameters for the considered system,
the development and test of an RSFQ qubit control, and
the realization of a final experiment for the observation of
coherent manipulation with pulses in a tunable flux qubit.
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